

AIRS Science Team Meeting Feb. 25, 2003

A quick look at retrievals over Brazil

Christopher Barnet, UMBC/JCET
Roberto V. Calheiros, Agencia Espacial Brasileira(AEB)

Rodrigo Augusto Ferreira de Souza, Instituto Nacional Pesquisas Espaciais (INPE)

The Basic Retrieval Equation

For discussion, assume a retrieval equation looks like

$$\Delta X_i = \left[S'_{i,n} \cdot W_{n,m} \cdot S_{m,j} + H_{i,j} \right]^{-1} \cdot S'_{j,m} \cdot W_{m,n} \cdot (O - C(n) + T(n)) \quad (1.1)$$

where, n and m are channel indices, $S_{n,i}$ is the sensitivity of channel n to parameter i (or j), O - C(n) is the observed radiances minus the radiances computed from the current state of X. T(n) is radiance tuning, if applied.

The weighting matrix, $W_{n,m}$ is derived from the covariance of instrument and geophysical errors, $N_{n,m}$ that are a strong function of cloudiness due to the linear combinations imposed by cloud clearing. In addition, we could have other error sources, such as RTA and spectroscopy errors, $E_{n,m}$.

$$W_{n,m} = [N_{n,m} + E_{n,m}]^{-1} (1.2)$$

Biases of O-C

BIASES of O-C were determined by comparison of AIRS with ECMWF computed radiances for CLEAR, OCEAN, NIGHT conditions. Infrared appears to be stable in Sep. and Oct.

Tuning versus Error Terms

- If E(n,m)=0 then we believe O-C(n)-T(n) which means the retrieval assumes very low errors
- If $E(n,m) \neq 0$ then
 - -O-C(n) is not believed entirely
 - -AMSU & AIRS convergence is relaxed \Rightarrow greater yield.
- Experiments with INFRARED TUNING set to $\overline{O-C(n)}$ and experiments with the error term set to $\overline{O-C(n)}$ have similar results when this is the only change applied!
- Since biases on obs-calc's, $\overline{O-C(n)}$ has both forecast errors and spectroscopy/instrument errors we attemped an experiment with only the diagonal error term specified

$$E_{n,n} = \left(\frac{\overline{O - C(n)}}{2}\right)^2 + E_{rta}(n)^2 \tag{1.3}$$

Conclusions about INFRARED tuning

- All experiments done to date used a simple BIAS tuning for the microwave.
- We recently fixed two BUGs with the MICROWAVE tuning in which we inadvertantly set HSB tuning equal to AMSU's tuning with the opposite sign $T(HSB) = -T(AMSU) \Rightarrow Statistics of 70 granules within <math>\pm 60^{\circ}$ latitude on 9/6/02 with and without this BUG are VERY similar.
- While global and statistical views have value, it is also IMPER-ATIVE that we look at individual & independent validation cases to determine issues w/ regard to tuning.
- I ran ≈ 2500 granules with T(n) = 0 and E(n, m) specified by Eqn. 1.3 from 8/31/02 to 11/30/02 to look for trends and provide retrievals at validation sites in the US and Brazil.
- ullet Tomorrow these retrieval results will be compared to coordinated in-situ during pprox 90 AQUA overpasses

Oct. 15, 2002: 1:30 p.m.

Microwave Tuning

Microwave tuning determined from \approx 45,000 cases from Sep. 6, 2002. Cases were restricted to \pm 60 latitude, OCEAN, and NO Liquid water.

Guajara Mirim, Oct. 15, 2003

Baseline run ("b50" w/ HSB T(n) BUGS fixed) using T(n)=0, E(n,n) is set as in Eqn. 1.3. NOTE: problem w/ q(p) and large L(p). Also, q(p) never exceeds saturation

Guajara Mirim, Oct. 15, 2003

Baseline run w/ HSB T(n) BUGS re-installed. NOTE that L(p) is zero here. This emulates a "b30" system w/o TUNING

Guajara Mirim, Oct. 15, 2003

Baseline + removed microwave channels from all q(p) steps (including MIT).

Oct. 22, 2002: 1:30 p.m.

Baseline run (all known BUGS fixed) using T(n)=0, E(n,n) is set as in Eqn. 1.3

Baseline run w/ HSB T(n) BUGS re-installed. NOTE that L(p) is zero here. This emulates a "b30" system w/o TUNING

Baseline + removed microwave channels from all q(p) steps (including MIT).

Water Retrieval Conclusions

- "Correct" tuning causes MIT water vapor retrieval to exceed saturation and to have large liquid water. MIT retrieval does not reject these cases.
- ..or.. HSB tuning is a function of land/ocean or a function of moisture.
 - errors in forward model could be water dependent.
 - Earth shine on platform?
- In simulations we set a rejection criteria for Liquid Water \geq 0.3 mm. This may be unnecessary.
- Infrared water retrieval is having a difficult time converging with HSB. The cloudier it gets, the more HSB is believed.
- I suggest we spend time with each and every case with coordinated observations during overpasses. There is a wealth of information to be gained from these difficult cases ⇒ need to work in an interactive manner with validation groups.